Case Study: Type 2 Diabetes, Chronic Kidney Disease, and Hemodialysis

Clinical Nutrition and Disease 1 2019 Fall A Semester

Skills: Nutrition Education for Hemodialysis and ESRD Patients, Creation of Diet for Renal Failure, Determination of Energy Needs Using Adjusted Edema-Free Weight, Physiology of Normal Kidney Function, Identification of Abnormal Lab Values in Renal Disease

CS #19: Chronic Kidney Disease (CKD) Treated with Dialysis

By Annika Rockwell

- ✓ Mrs. Enez Joaquin
- ✓ Age 24, Native American (Pima Indian), married with 7 year old daughter
 - ✓ T2D since age 13
 - ✓ Not compliant with diet or meds
 - ✓ Dx Stage 3 CKD 2 years ago has progressed to Stage 5 ESRD
 - ✓ Admitted with list of acute symptoms
- ✓ Needs hemodialysis & renal transplant

Patient Overview

- ❖ Height: 5'0"
- ❖ Weight: 170 lbs.
- ❖ BMI of 33 (obese I)
- **Presenting symptoms:**
 - **❖** Loss of appetite, N/V,
 - ❖ 4kg weight gain in past 2 week (water weight)
 - Edema, malaise, SOB
 - Pruritus (itchy skin)
 - Muscle cramps
 - Inability to urinate

Review: Chronic Kidney Disease (CKD) & Kidney Function

- CKD affects 15% of US adults (37 million)
- Most adults with CDK don't know they have it
- Renal disease usually caused by T2D and high BP

Kidneys

- Filter 1,600 Liters of blood per day
- Generate 1.5 Liters of urine per day
- Maintain body's homeostatic balance, body fluids, electrolytes, blood pH.
- Control blood pressure
- Prevent anemia via EPO
- Produce active Vit D3 (for Ca+ absorption and Phosphorus excretion)

Mrs. Joaquin's Condition, Risk Factors & Tx

Patient's risk factors for Chronic Kidney Disease (CKD):

- T2D, HTN
- Obesity (BMI 33.2)
- Race (Pima Indian)
- CKD deterioration from Stage 3 (two years ago) to Stage 5
 - ❖GFR of 4 mL/min.
 - ❖ Oliguria & anuria
- Tx: New strict adherence to renal diet and dialysis 3x weekly until kidney-replacement.

Mrs. Joaquin's New Medical Treatment

- Glucophage (metformin) 850mg BID (lowers BG, biguanide)
- ❖ 6 new medications:
 - ❖ Capoten 25mg BID (HTN)
 - Erythropoietin 30 units/kg (RBC,anemia)
 - ❖ NaHCO3 2g QD (blood pH)
 - ❖ Renal caps QD (vitamins lost during HD)
 - ❖ Renvela TID w/meals (Phosphate binder)
 - ❖ Hectorol 2.5pg QID 3 times/week (Vit D2, hypocal)
 - ❖ Stool softener (new meds and fluid restriction)

Diet Overview

- ❖ Increased calories 2,500 per day, 50% CHO, 25% PRO, 25% LIP.
- * Restricted intake of K, PO4, and Na (adjusting with labs)
- ❖ Increased PRO
- Carb counting
- ❖ Increased fiber intake

Table 1: Renal Diet Exchanges Restricted in Na, K, and P.

	Fruit/Juice	Bread/Starch	PRO	Veggies	Milk	Fat
Breakfast	1	3	1	0	1	2
Lunch	1	3	3	1	0	2
Dinner	1	2	3	1	0	2
Total	3	8	7 oz.	2	1	6

Nutrition Prescription (NP) from eNCPT Intervention

- Energy modification: 2,500 kcal per day (35g/kg)
- ❖ PRO modification: 72-84g per day
- * Consistent carbohydrate diet: 50% of calories at each meal using CHO counting.
- ❖ Increased **fiber** diet: 20-25 grams per day.
- ❖ Fluid restricted diet: 1,000 mL + urine output per day.
- ❖ Decreased phosphorus diet: 2-3g per day (10-15 mg/kg) from food, adjusted based on serum levels.
- ❖ Decreased potassium diet: 2-3g per day from food.
- ❖ Decreased sodium diet: 2-3g per day.

Nutrition Assessment (Part 1)

Estimated kcal needs:

- 35 kcal/kg (National Kidney Foundation guidelines) using <u>adjusted edema-free weight</u> with NHANES II data of Standard Body Weight (SBW)
- SBW = 60kg for medium frame female with height 152.4 cm (NHANES II data table).
- $BW_{ef} = (170#) \rightarrow 77.3 \text{ kg} 4\text{kg}$ (edema weight gain in last 2 weeks) = 73.3kg
- $(aBW_{ef}) = BW_{ef} + [(SBW-BW_{ef}) \times 0.25] =$
 - 73.3kg + [(60kg 73.3kg) x 0.25] =
 - 73.3 -(3.325) = **69.98** kg

Energy needs: 69.98 x 35 kcal/kg = 2,449 kcal!

Nutrition Assessment (Part 2)

Estimated Protein Needs:

- ❖ Range of 72 -84g per day based on 1.2 g/kg of SBW or (aBWef) with >50% HBV (High Biological Value)
- **❖** SBW: 60 kg x 1.2 = **72g** (using NHANES II SBW data)
- 4 (aBWef): 69.9 kg x1.2 = 83.9 = **84g**

Estimated fluid needs:

- ❖ 1,000 mL per day + urine output.
- Hemodialysis patients cannot gain more than 5% body weight bt dialysis sessions.
- Mrs. Joaquin is no longer producing urine and must limit liquids.

Reference: Academy's Manual of MNT, 2019

Nutritional Rx (Part 1)

- Restrict K+ intake to 2-3g per day based on lab value of 5.8 mEq/L to avoid hyperkalemia, smooth muscle change, cardiac effects, and nervous system decline.
- Restrict PO4 intake to 2-3g (10-15 mg/kg) per day and adjust based on serum levels. Take phosphate binder.
- Restrict Na+ intake to 2-3g per and customize based on edema, blood pressure, and thirst.
- ❖ Calcium intake should not exceed 2-2.5g per day and can be adjusted based on lab values.

Reference: Academy's Manual of MNT, 2019

Nutritional Rx (Part 2)

- **❖ Increase PRO** (≥1.2 g/kg) daily to prevent protein malnutrition.
 - Dialysis causes protein loss.
 - ❖ Protein sources should have ≥50% of High Biological Value (HBV) in order to create less nitrogenous waste in blood.
- ❖ 1 serving of cold-water fish three times per week for hyperlipidemia (Manual of MNT, 2019).
- * Restrict fluid intake to 1,000 mL + urine output
 - Liquids include soups, frozen liquids, ice, ice cream, sherbet, popsicles, yogurt, custard, gelatin (Jell-O).
 - Limit salt intake in order to prevent excess thirst.

Nutritional Rx (Part 3)

- CHO intake 50% of caloric intake using CHO counting to control BG.
- ❖ Fiber intake should be adequate (20-25g) in order to prevent constipation caused by medications and fluid restrictions (Manual of MNT, 2019).
- ❖ Education twice weekly to transition onto the renal diet for Stage 5 & hemodialysis.
- Critical importance of carefully following the new diet and Rx (matter of life or death).

Abnormal Lab Values

- ❖ Many labs are abnormal and getting worse:
 - Kidneys are failing/unable to filter the blood, maintain homeostasis, regulate electrolytes, minerals, pH, activate vitamin D, or produce enough EPO to prevent anemia.
- Abnormal lab values seen: Na, K, Ch, CO2, Bicarb, BUN, Cr, BUN/Cr ratio, GFR, BG, Phosphate, Ca, Osmolality, protein, albumin, cholesterol, VLDL, Triglycerides, HbA1c, RBC, Hgb, Hct, urine pH, protein, glucose, and ketones, ABG pCO2, and HCO3.

Patient Resources

Patient Resources

Patient Resources

Limit or Avoid These Foods

Patient Resources Dialysis Support Groups for Lifestyle Changes

- Davita hosts educational support groups nationally
- https://www.davita.com/education/ckdlife/support/support-groups-for-peopleliving-with-kidney-disease

